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Abstract
In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat
in the frame of the three-body problem. Using geometric/mechanic methods we
study the approximate dynamics of the truncated Legendre series representation
of the potential of an arbitrary order. Working in the reduced problem, we study
the existence of relative equilibria that we refer to as Lagrange type following
the analogy with the standard techniques. We provide necessary and sufficient
conditions for the linear stability of Lagrangian relative equilibria if the gyrostat
morphology form is close to a sphere. Thus, we generalize the classical results
on equilibria of the three-body problem and many results on them obtained by
the classic approach for the case of rigid bodies.

PACS number: 02.40.Ma
Mathematics Subject Classification: 34J15, 34J20, 53D17, 70F07, 70K42,
70H14

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new interest in the study of configurations of relative equilibria by the use of differential
geometry methods instead of more classical ones has appeared in recent years. See for
instance, Wang et al [8] who treat the problem of a rigid body in a central Newtonian field or
Maciejewski [5] for the problem of two rigid bodies under mutual Newtonian attraction.

A gyrostat is a mechanical system S composed by a rigid body S ′ and other bodies S ′′

deformable or rigid, connected in such a way that their relative motion with respect to its rigid
part does not change the distribution of masses of the total system (see Leimanis [4]). Results
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Figure 1. Gyrostat in the three-body problem.

of papers [5] and [8] are generalized in Mondéjar et al [3] to the case of two gyrostats under
mutual Newtonian attraction.

Concerning the problem of the motion of three rigid bodies, Vidiakin [6] and Duboshin
[1] prove the existence of Euler’s and Lagrange’s configurations of equilibria when the
physical morphology of the bodies has symmetries (for a more up-to-date reference see
[9]). See Guirao et al [2] for a complete study of the Eulerian relative equilibria, see
figure 1.

Vera [7] and Vera et al [9] have studied the non-canonical Hamiltonian dynamics
of n + 1 bodies in Newtonian attraction, n of them being rigid bodies with a spherical
distribution of masses or material points and the other one a triaxial gyrostat. Working
on the reduced problem, global considerations on the conditions for relative equilibria are
performed.

In this paper, we consider the problem of analyzing the non-canonical Hamiltonian
dynamics of two bodies in Newtonian attraction from a qualitative point of view. Thus, we
shall describe the approximate dynamics appearing when we take the truncated Legendre
series representation of the potential function at an arbitrary order.

We provide global conditions on the existence of relative equilibria in the case where S1

and S2 are spherical or punctual bodies and S0 is a gyrostat. Following the analogy with the
classical results we shall refer to such equilibria as Lagrange type. Necessary and sufficient
conditions for the existence of such equilibria are stated and their explicit expressions are
presented. It allows us to study their stability. We develop a complete study of the linear
stability of Lagrangian relative equilibria when the gyrostat morphology form is close to a
sphere.

As a consequence of this geometric/mechanic study we obtain and generalize some results
previously stated using classical methods in previous works. On the other hand, new results
not obtained with standard techniques are presented.

The methods introduced in this work can be used in similar problems. A natural extension
of this work, which we state as a problem for the future, is to study the nonlinear stability of
the Lagrangian relative equilibria obtained in this paper.
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2. Equations of motion

Let S0 be a gyrostat of mass m0 and S1, S2 be two spherical rigid bodies of masses m1 and m2,
respectively. We use the following notations:

M2 = m1 + m2, M1 = m1 + m2 + m0, g1 = m1m2

M2
, g2 = m0M2

M1
.

For u, v ∈ R
3, u · v is the dot product, |u| is the Euclidean norm of the vector u and u × v

is the cross product. IR3 is the identity matrix and 0 is the zero matrix of order 3. We consider
I = diag(A, A, C) the diagonal tensor of inertia of the gyrostat and let z = (Π, λ, pλ, μ,

pμ) ∈ R
15 be a generic element of the twice reduced problem obtained using the symmetries

of the system. Π = IΩ + lr is the total rotational angular momentum vector of the gyrostat
in the body frame, which is attached to its rigid part and whose axes have the direction of the
principal axes of inertia of S0 and lr = (0, 0, l) is the constant gyrostatic momentum. The
elements λ, μ, pλ and pμ are respectively the barycentric coordinates and the linear momenta
expressed in the body frame J.

The twice reduced Hamiltonian of the system, see [9] for more details, has the following
expression:

H(z) = |pλ|2
2g1

+
|pμ|2
2g2

+
1

2
� I

−1� − lr · I
−1� + V(λ, μ). (1)

Let M = R
15, and we consider the manifold (M, { , },H), with Poisson brackets { , },

defined by using the the Poisson tensor

B(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

Π̂ λ̂ p̂λ μ̂ p̂μ

λ̂ 0 IR3 0 0

p̂λ −IR3 0 0 0

μ̂ 0 0 0 IR3

p̂μ 0 0 −IR3 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (2)

In B(z), v̂ is considered to be the image of the vector v ∈ R
3 by the standard isomorphism

between the Lie Algebras R
3 and so(3), i.e.

v̂ =
⎛⎝ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞⎠ .

The equations of the motion are given by the following expression:

dz
dt

= {z,H(z)} = B(z)∇zH(z)

where ∇uV is the gradient of V with respect to an arbitrary vector u.
Developing {z,H(z)}, we obtain the following group of vectorial equations of the motion:

dΠ
dt

= Π × Ω + λ × ∇λV + μ × ∇μV,

dλ

dt
= pλ

g1
+ λ × Ω,

dpλ

dt
= pλ × Ω − ∇λV,

dμ

dt
= pμ

g2
+ μ × Ω,

dpμ

dt
= pμ × Ω − ∇μV. (3)
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We denote by ze = (Πe, λ
e, pe

λ, μ
e, pe

μ) a generic relative equilibrium of

dz
dt

= {z,H(z)} = B(z)∇zH(z).

The potential function V(λ, μ) is given by the expression

−
(

Gm1m2

|λ| + Gm1

∫
S0

dm(Q)∣∣Q + μ+ m2
M2

λ
∣∣ + Gm2

∫
S0

dm(Q)∣∣Q + μ − m1
M2

λ
∣∣
)

. (4)

3. Approximate Hamiltonian dynamics

To simplify the problem we assume that the gyrostat S0 is symmetrical around the third axis
of inertia Oz of the body frame J and with respect to the plane Oxy of the same frame. If the
mutual distances are longer than the individual dimensions of the bodies, then we can develop
the potential using a convergent series of high speed. Under these hypotheses, we will be able
to carry out a study of certain relative equilibria in different approximate dynamics.

Applying the Legendre development of the potential, we have that V(λ, μ) has the form

−
⎛⎝Gm1m2

|λ| + Gm1

∞∑
i=0

A2i∣∣μ + m2
M2

λ
∣∣2i+1 + Gm2

∞∑
i=0

A2i∣∣μ − m1
M2

λ
∣∣2i+1

⎞⎠
where A0 = m0, A2 = (C − A)/2 and A2i are certain coefficients related to the geometry of
the gyrostat, see [9] for details.

Definition 1. The approximate potential of order k V(k)(λ, μ) is defined as the following
expression:

−
⎛⎝Gm1m2

|λ| + Gm1

k∑
i=0

A2i∣∣μ + m2
M2

λ
∣∣2i+1 + Gm2

k∑
i=0

A2i∣∣μ − m1
M2

λ
∣∣2i+1

⎞⎠ .

Definition 2. Let M = R
15 and let the manifold (M, { , },Hk), with Poisson brackets { , },

be defined by using the Poisson tensor

B(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

Π̂ λ̂ p̂λ μ̂ p̂μ

λ̂1 0 IR3 0 0

p̂λ −IR3 0 0 0

μ̂ 0 0 0 IR3

p̂μ 0 0 −IR3 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We define the approximate dynamics of order k to be the differential equations of motion given
by the following expression:

dz
dt

= {z,Hk(z)} = B(z)∇zHk(z)

where

Hk(z) = |pλ|2
2g1

+
|pμ|2
2g2

+
1

2
�I

−1� − lr · I
−1� + V(k)(λ, μ).

In this setting we have the following result.
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Theorem 3. In the approximate dynamics of order 0, |Π|2 is an integral of motion and
also when the gyrostat is of revolution π3 is another integral of motion for all approximate
dynamics.

Proof. The proof is the consequence of two facts. On the one hand, by calculation it is easy
to verify that

∇z(|Π|2))B(z)∇zH0(z) = 0

and on the other hand, we obtain in a similar way, when the gyrostat is of revolution,

∇z(π3)B(z)∇zHk(z) = 0

where π3 is the third component of the rotational angular momentum of the gyrostat. �

4. Relative equilibria

The relative equilibria are the equilibria of the twice reduced problem whose Hamiltonian
function is obtained in [9] for the case n = 2. If we denote by ze = (

Πe, λ
e, pe

λ, μ
e, pe

μ

)
a generic relative equilibrium of an approximate dynamics of order k, then this verifies the
equations

Πe × Ωe + λe × (∇λV(k))e + μe × (∇μV(k))e = 0,

pe
λ

g1
+ λe × Ωe = 0, pe

λ × Ωe = (∇λV(k))e,

pe
μ

g2
+ μe × Ωe = 0, pe

μ × Ωe = (∇μV(k))e (5)

where (∇λV(k))e and (∇μV(k))e respectively are the values of ∇λV(k) and ∇μV(k) in ze.

The following result which is provided in [9] will play a key role in this work because it will
be used to obtain necessary conditions for the existence of relative equilibria in approximate
dynamics.

Lemma 4. If ze = (
Πe, λ

e, pe
λ, μ

e, pe
μ

)
is a relative equilibrium of an approximate dynamics

of order k, the following relationships are verified:

|Ωe|2|λe|2 − (λe · Ωe)
2 = 1

g1
(λe · (∇λV(k))e)

|Ωe|2|μe|2 − (μe · Ωe)
2 = 1

g2
(μe · (∇μV(k))e).

We will study the relative equilibria in the approximate dynamics for which their vectors
Ωe, λe, μe satisfy some special geometric properties.

Definition 5. A point ze will be called the Lagrangian relative equilibrium in an approximate
dynamics of order k, if λe, μe are not proportional vectors and Ωe is perpendicular to the
plane that λe and μe generate.

In this setting we have the following result.

Proposition 6. In a Lagrangian relative equilibrium for any approximate dynamics of
arbitrary order, moments are not exercised on the gyrostat.
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Proof. The proof follows from the equations of motion and the potential relations in the
equilibrium. �

In the next section we endeavor to obtain necessary and sufficient conditions for the
existence of Lagrangian relative equilibria.

5. Lagrangian relative equilibria

5.1. Necessary condition for the existence

Proposition 7. Let ze = (
Πe, λ

e, pe
λ, μ

e, pe
μ

)
be Lagrangian relative equilibria. Then we

have

g2(Ã11)e = g1(Ã22)e

(Ã12)e = 0

with

|Ωe|2 = (Ã11)e

g1
= (Ã22)e

g2
.

Proof. If ze = (
Πe, λ

e, pe
λ, μ

e, pe
μ

)
is Lagrangian relative equilibria, in an approximate

dynamics of order k, the following identities are verified:

λe × (∇λV(k))e = 0, g1|Ωe|2(λe × μe) = (∇λV(k))e × μe,

μe × (∇μV(k))e = 0, g2|Ωe|2(λe × μe) = λe × (∇μV(k))e.

In the relative equilibria, from equation (A.2) of the appendix, we deduce

(Ã12)e(λ
e × μe) = 0, g1|Ωe|2(λe × μe) = (Ã11)e(λ

e × μe),

(Ã21)e(λ
e × μe) = 0, g2|Ωe|2(λe × μe) = (Ã22)e(λ

e × μe),

where (Ãij )e is the evaluation in the equilibria of Ãij .

Concluding, we have the following relations:

(Ã12)e = 0, |Ωe|2 = (Ã11)e

g1
= (Ã22)e

g2

and the proof is complete. �

Proposition 8. If ze = (
Πe, λ

e, pe
λ, μ

e, pe
μ

)
is Lagrangian relative equilibria in

an approximate dynamics of order k, then denoting by |λe| = Z,
∣∣μe + m2

M2
λe

∣∣ = X,∣∣μe − m1
M2

λe
∣∣ = Y, the system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X2k+3 =
k∑

i=0

βiZ
3X2(k−i)

Y 2k+3 =
k∑

i=0

βiZ
3Y 2(k−i)

(6)

has positive real solutions.

Proof. The proof follows by using the expressions of Ãij given in (A.3). �

Remark 9. The parameters that have influence in the study of the number of the different
configurations of Lagrangian relative equilibria will be Z and βi (i = 1, 2, . . . , k).

6
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5.2. Sufficient condition of existence

If we fix Z and there exist X and Y verifying the system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X2k+3 =

k∑
i=0

βiZ
3X2(k−i)

Y 2k+3 =
k∑

i=0

βiZ
3Y 2(k−i)

with respect to an appropriate reference system, we can build Lagrangian relative equilibria.
If X = Y �= Z is a solution of the previous system, then Si (i = 0, 1, 2) form an isosceles
triangle. If X �= Y �= Z then Si form a scalene triangle.

Proposition 10 shows the form of the Lagrangian relative equilibria when S0, S1, S2

form an isosceles triangle. In a similar way proposition 11 describes the Lagrangian relative
equilibria expressions when S0, S1, S2 form a scalene triangle. Thus, we obtain the following
results.

Proposition 10. With respect to an appropriate reference system we have that ze =(
Πe, λ

e, pe
λ, μ

e, pe
μ

)
given by

λe = (x1, y1, 0), pe
λ = g1ωe(−y1, x1, 0),

μe = (x2, y2, 0), pe
μ = g2ωe(−y2, x2, 0),

Ωe = (0, 0, ωe), Πe = (0, 0, Cωe + l),

with

x1 = Z, y1 = 0, x2 = Z(m1 − m2)

2(m1 + m2)
, y2 = ±

√
4X2 − Z2

2
and

ω2
e =

k∑
i=0

G(m0 + m1 + m2)βi

X2i+3

where β0 = 1, βi = αi

m0
, for i � 1, are isosceles Lagrangian relative equilibria. Moreover,

the total angular momentum vector of the system is given by

L =
(

0, 0, Cωe + l + ω2
e

2∑
i=1

gi

(
x2

i + y2
i

))
.

Proposition 11. With respect to an appropriate reference system we have that ze =(
Πe, λ

e, pe
λ, μ

e, pe
μ

)
given by

λe = (x1, y1, 0), pe
λ = g1ωe(−y1, x1, 0),

μe = (x2, y2, 0), pe
μ = g2ωe(−y2, x2, 0),

Ωe = (0, 0, ωe), Πe = (0, 0, Cωe + l),

with

x1 = Z, y1 = 0

x2 = m1(X
2 + Z2 − Y 2) − m2(Y

2 + Z2 − X2)

2(m1 + m2)Z

y2 = ±
√

(Z + X + Y )(Z + X − Y )(Z + Y − X)(X + Y − Z)

2Z

7
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and

ω2
e =

k∑
i=0

Gm1(m0 + m1 + m2)βi

(m1 + m2)X2i+3
+

k∑
i=0

Gm2(m0 + m1 + m2)βi

(m1 + m2)Y 2i+3

where β0 = 1, βi = αi

m0
, for i � 1, are scalene Lagrangian relative equilibria. Moreover, the

total angular momentum vector of the system is given by

L =
(

0, 0, Cωe + l + ω2
e

2∑
i=1

gi

(
x2

i + y2
i

))
.

In what follows we study the Lagrangian relative equilibria in the approximate dynamics
of orders 0 and 1 respectively.

5.3. Lagrangian relative equilibria in an approximate dynamics of order zero

When k = 0, equations (6) are{
X3 = Z3

Y 3 = Z3

and then we easily deduce that X = Y = Z. This means that S0, S1 and S2 form an equilateral
triangle. Moreover,

|Ωe|2 = G(m0 + m1 + m2)

Z3
.

On the other hand, a parametrization of ze = (Πe, λ
e, pe

λ, μ
e, pe

μ) is given by

λe = (x1, y1, 0), pe
λ = g1ωe(−y1, x1, 0),

μe = (x2, y2, 0), pe
μ = g2ωe(−y2, x2, 0),

Ωe = (0, 0, ωe), Πe = (0, 0, Cωe + l),

where

x1 = Z, y1 = 0, x2 = Z(m1 − m2)

2(m1 + m2)
, y2 = ±

√
3Z

2
.

This parametrization of the relative equilibria will play a key role in the study of their stability
properties.

5.4. Lagrangian relative equilibria in an approximate dynamics of order 1

For k = 1, equations (6) are{
X5 − Z3X2 − β1Z

3 = 0

Y 5 − Z3Y 2 − β1Z
3 = 0

(7)

where Z and β1 are parameters. We study the number of positive real roots of the polynomial

p(X) = X5 − Z3X2 − β1Z
3

according to the values of the parameters Z and β1.
Applying Descartes’ rule of signs, if β1 � 0, then this polynomial can only have a positive

real root.

8
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1

a1a2c

0 1 2 3 4
2

1

0

1

2

Z

β 1

Figure 2. Bifurcations of the equilibria in the plane β1Z.

If β1 < 0, then we can have two positive real roots, a real root (positive) or none. The
discriminant of the polynomial, denoted by discrim(p,X), is given by

discrim(p,X) = β1Z
12

(
3125β3

1 + 108Z6
)
.

Then if discrim(p,X) < 0, the polynomial p has two real roots, if discrim(p, x) = 0, it
has a positive double root, while if discrim(p, x) > 0, it has no positive root.

The discriminant is zero when the following relation is verified:

β1 = −3 3
√

20

25
Z2.

By the previous results we can make a complete study of the bifurcations of the equilibria in
an approximate dynamics of order 1, see figure 2.

Proposition 12. Let ze = (
Πe, λ

e, pe
λ, μ

e, pe
μ

)
be a Lagrangian relative equilibria, in an

approximate dynamics of order 1.

(1) If β1 � 0 (gyrostat oblate), an only 2-parametric family exists forming S0, S1, S2 an
isosceles triangle.

(2) If β1 < 0 (gyrostat prolate), then
(a1) if −7Z2

32 < β1 < 0, there are two types of relative equilibria:
• one 2-parametric family of relative equilibria forming S0, S1, S2 an isosceles

triangle with X = Y �= Z

• two 2-parametric families of relative equilibria forming S0, S1, S2 a scalene
triangle with X �= Y �= Z;

(a2) if − 3 3√20
25 Z2 < β1 < −7Z2

32 , there are two types of relative equilibria:
• two 2-parametric families of relative equilibria forming S0, S1, S2 an isosceles

triangle with X = Y �= Z

• four 2-parametric families of relative equilibria forming S0, S1, S2 an scalene
triangle with X �= Y �= Z;

(b) if β1 = − 3 3√20
25 Z2, an only 2-parametric family exists forming S0, S1, S2 an isosceles

triangle, with X = Y �= Z;
(c) if β1 < − 3 3√20

25 Z2, relative equilibria do not exist.

Remark 13. It is easy to see that when the gyrostat is oblate, in the previous equilibria, it
rotates quicker around the principal axis of inertia C than that when the gyrostat is prolate.

9



J. Phys. A: Math. Theor. 43 (2010) 195203 J L G Guirao and J A Vera

Remark 14. To study the Lagrangian relative equilibria in an approximate dynamics of order
k, we should study the positive real solutions of the equation

X2k+3 −
k∑

i=0

βiZ
3X2(k−i) = 0.

If we know the number of positive roots in the approximate dynamics of order k, we can
know the number of positive roots of the polynomial equation that arises in the approximate
dynamics of order k + 1. This study reduces to calculate the number of positive roots of the
equation

βk+1 = X2
[
X2k+3 − ∑k

i=0 βiZ
3X2(k−i)

]
Z3

.

5.5. Lagrangian relative equilibria of order 1 when S0 has form close to a sphere

If S0 is close to a sphere, then β1 ≈ 0. To first order in β1 the parametrization of
ze = (Πe, λ

e, pe
λ, μ

e, pe
μ) is given by

λe = (x1, y1, 0), pe
λ = g1ωe(−y1, x1, 0),

μe = (x2, y2, 0), pe
μ = g2ωe(−y2, x2, 0),

Ωe = (0, 0, ωe), Πe = (0, 0, Cωe + l),

where

x1 = Z, y1 = 0, x2 = Z(m1 − m2)

2(m1 + m2)
,

y2 = ±
(√

3Z

2
+

2
√

3

9Z
β1 + o(β1)

)
.

6. Linear stability of the Lagrangian relative equilibrium

The tangent flow of equations (3) at the equilibrium ze is

dδz
dt

= U(ze)δz

where δz = z − ze and U(ze) is the Jacobian matrix of (3) in ze.

6.1. Order zero approximate dynamics

The characteristic polynomial of U(ze) has the following expression:

P(λ) = λ3(λ2 + 	2)
(
λ2 + ω2

e

)3(
λ4 + ω2

eλ
2 + q

)
(8)

where

ω2
e = G(m0 + m1 + m2)

Z3
, q = 27G2(m1m0 + m2m0 + m1m2)

4Z6

and 	 = (C−A)ωe+l

A
.

Then the following results are verified.

10
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Proposition 15. ze is spectral stable if

(m0 + m2 + m1)
2 � 27(m1m0 + m2m0 + m1m2). (9)

If

(m0 + m2 + m1)
2 < 27(m1m0 + m2m0 + m1m2),

then ze is unstable.

Proof. The proof follows from the form of the minimum polynomial of U(ze) which has the
following expression:

Q(λ) = λ2(λ2 + 	2)
(
λ2 + ω2

e

)(
λ4 + ω2

eλ
2 + q

)
. �

Proposition 16. The linear system

dδz
dt

= U(ze)δz

is unstable.

Proof. In this case the minimum polynomial of U(ze) has the zero as the double root; that is
why the matrix U(ze) is not diagonalizable, and the proof is complete. �

6.2. Order 1 approximate dynamics

Similar results show that the characteristic polynomial in an order 1 approximate dynamics
has the following expression:

P(λ) = λ(λ2 + 	2)(λ2 + m)(λ2 + n)h(λ)

with

h(λ) = λ8 + pλ6 + qλ4 + rλ2 + s.

Thus, we have the following result.

Proposition 17. The Lagrangian relative equilibria in order 1 approximate dynamics are
spectral stable (lineary stable) if the following conditions are verified:

p2q2 − 3rp3 − 6p2s − 4q3 + 14pqr + 16qs − 18r2 � 0(> 0)

p2qr − 48sr − 9sp3 + 32pqs − 4q2r + 3pr2 � 0(> 0)

r, s � 0 (> 0), 3p2 − 8q � 0 (> 0), pr − 16s � 0 (> 0)

m, n � 0 (> 0)

discrim(h) � 0 (> 0)

where

discrim (h) = 18p3rqs − 4p3r3 − 128q2s2 + 16q4s − 4q3r2 − 27p4s2

− 80prq2s + 256s3 − 27r4 − 6p2r2s − 192prs2 + 18pr3q + 144qp2s2

+ q2p2r2 − 4q3p2s + 144sr2q.

Proof. The coefficients of the characteristic polynomial are expressed as a function of the
parameters of our problem, i.e. the masses and the coefficient β1, and the proof follows from
the application of the Sturm theorem. �

11
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Remark 18. If ze is an arbitrary relative equilibrium, the conditions of the statement of
proposition 17 have very complicated expressions in the parameters of the problem, and can
only be studied via numerical analysis.

If S0 is close to a sphere, the coefficients of P, to first order in the parameter β1, hold the
following relationships:

m = G(m0 + m1 + m2)

Z3
+ o1(β1), n = G(m0 + m1 + m2)

Z3
+ o2(β1),

s = o3(β1),

r = 27G3(m0 + m1 + m2)(m1m0 + m2m0 + m1m2)

4Z9
+ o4(β1),

q = G2
(
4m2

0 + 4m2
1 + 4m2

2 + 35m0m1 + 35m0m2 + 35m1m2
)

4Z6
+ o5(β1),

p = 2G(m0 + m1 + m2)

Z3
+ o6(β1).

If the function

o3(β1) = 81G4m0(m1 + m2)(m0 + m1 + m2)
2

4
β1 + o

(
β2

1

)
is positive and

(m0 + m2 + m1)
2 > 27(m1m0 + m2m0 + m1m2), (10)

then ze is linearly stable in order 1 approximate dynamics. Then if S0 is close to a sphere and
C > A, then ze is linearly stable if (10) is verified.

For β1 = 3(C−A)

2m0
> 0 in the domain of parameters m0,m1, m2 the surface (m0+m2+m1)

2 =
27(m1m0 + m2m0 + m1m2) is a ruled hyperboloid. Figures 3 and 4 illustrate these facts.

7. Conclusions and future works

The approximate dynamics of a gyrostat (or rigid body) in Newtonian interaction with two
spherical or punctual rigid bodies has been considered. For orders 0 and 1 of the approximate
dynamics we provide a complete study of Lagrangian relative equilibria. The bifurcations of
the Lagrangian relative equilibria are completely described for an approximate dynamics of
order 1. Necessary and sufficient conditions are given for the linear stability of the Lagrangian
relative equilibria in zero-order and one-order approximate dynamics if the gyrostat S0 has
form close to a sphere.

Several results obtained in previous works by classical methods have been
obtained and generalized in a different way. Other results, not previously considered,
have been studied. These developments help to understand real physical situations see
figures 5–7.

The methods employed in this work are susceptible of being used in similar problems.
Numerous problems are open, and among them it is necessary to consider the study of the
‘inclined’ relative equilibria, in which Ωe form an angle α �= 0 and π/2 with the vector
λe × μe. The study of the nonlinear stability of the relative equilibria obtained here is the
natural continuation of this work.
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Figure 3. The ruled surface.
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Figure 4. Region of linear stability.
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Z

S2

S1

S0X Y

Figure 5. Isosceles Lagrangian equilibrium with S0 a prolate gyrostat. This equilibrium is always
unstable for all values of the parameters.

Z

S2

S1

S0X Y

Figure 6. Equilateral Lagrangian equilibrium with S0 a spherical gyrostat. This equilibrium is
spectrally stable when (m0 + m2 + m1)

2 > 27(m1m0 + m2m0 + m1m2).

Z

X Y

S2

S1

S0

Figure 7. Isosceles Lagrangian equilibrium with S0 is an oblate gyrostat. This equilibrium is
linearly stable when β1 is a very small positive value and (m0 + m2 + m1)

2 > 27(m1m0 + m2m0 +
m1m2).
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Appendix

The following expressions are obtained for the potential V(k):

(∇λV(k))e =
(

Gm1m2λ
e

|λe|3 +
Gm1m2

M2

k∑
i=0

αi

(
μe + m1

M2
λe

)
|μe + m1

M2
λe|2i+3

−Gm1m2

M2

k∑
i=0

αi

(
μe − m2

M2
λe

)
|μe − m2

M2
λe|2i+3

)

(∇μV(k))e = Gm1

k∑
i=0

αi

(
μe + m1

M2
λe

)
|μe + m1

M2
λe|2i+3

+ Gm2

k∑
i=0

αi

(
μe − m2

M2
λe

)
|μe − m2

M2
λe|2i+3

. (A.1)

Also, the following identities are verified:

(∇λV(k))e = (Ã11)eλ
e + (Ã12)eμ

e, (∇μV(k))e = (Ã21)eλ
e + (Ã22)eμ

e (A.2)

where

Ã11(λ
e, μe) = Gm1m2

|λ|3 +
Gm1m

2
2

M2
2

(
k∑

i=0

αi

|μe + m1
M2

λe|2i+3

)

+
Gm2

1m2

M2
2

(
k∑

i=0

αi

|μe − m2
M2

λe|2i+3

)

Ã12(λ
e, μe) = Gm1m2

M2

(
k∑

i=0

αi

|μe + m1
M2

λe|2i+3
−

k∑
i=0

αi

|μe − m2
M2

λe|2i+3

)

Ã21(λ
e, μe) = Ã12(λ

e, μe)

Ã22(λ
e, μe) = Gm1

(
k∑

i=0

αi

|μe + m1
M2

λe|2i+3

)
+ Gm2

(
k∑

i=0

αi

|μe − m2
M2

λe|2i+3

)
(A.3)

with α0 = m0, α1 = 3(C − A)/2 and αi = (2i + 1)A2i for i � 2.
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